OFDM的思想早在70年代初期就有人提出,但是直到80年代后期随着数字信号处理(DSP)技术的发展和人们对高速数据通信需求的增长,才逐渐为人们所重视。现在它已被欧洲地面广播标准(EuropeanTerrestrialBroadcasting Standards)中DAB(数字音频广播)和DVB-T(数字视频广播)所采纳。2、低压输电线上的数字传输特性 低压输电线信道环境十分恶劣,对数字载波通信影响严重的干扰源主要有:信道噪音、信道衰耗和多径效应。 噪音是低压输电线上更大的干扰源。其来源很多,主要是设备开关切换产生的脉冲干扰、发电机刷生成的火花、用电设备产生的噪音以及电力线耦合的外界电磁波等。其中,对通信影响更大的是脉冲干扰,其频谱范围很宽且幅度较高。 载波信道的衰耗也严重影响了信号的传输。研究表明,变电站的介入是电力载波信道衰耗的主要原因〔1〕,衰耗值通常为20~30dB,更高不超过55dB。由于低压电力网中负载的不断投入和切除,信道的衰耗处于动态变化中,1s内某一频率的衰耗可20dB〔2〕。这一现象在通信中称为信道衰落,采用均衡技术可以消除信道衰落引起的误码,但是当传输速率很高时快速均衡难以实现。 多径效应是数字通信中特有的一种干扰,是指信号经过不同路径到目的地时由于信号的延迟而相互干扰的现象。低压电力网所连接的设备数量巨大、种类众多,整个网络的阻抗处于动态变化之中,这必然会造成许多用电设备工作在阻抗不匹配的状态。如果某些设备阻抗不匹配,信号到该处时必然会产生反射,这样一来,有用信号就可能经过若干条不同的路径到接收点。由于信号在每条路径上经历的时间不同,在接收点就会发生多径效应,延迟信号对有用信号形成干扰。当多径信号延迟较小时,这种干扰可以忽略;如果延迟较长,就会对有用信号产生严重的码间串扰(ISI)。3、OFDM的基本原理和组成结构 OFDM的思想早在70年代初期就有人提出,但是直到80年代后期随着数字信号处理(DSP)技术的发展和人们对高速数据通信需求的增长,才逐渐为人们所重视。现在它已被欧洲地面广播标准(EuropeanTerrestrialBroadcasting Standards)中DAB(数字音频广播)和DVB-T(数字视频广播)所采纳。3.1 OFDM的基本原理 OFDM技术把所传的高速数据流分解成若干个子比特流,每个子比特流具有低得多的传输速率,并且用这些低速数据流调制若干个子载波。 假设一个周期内传送的码元序列为(d0,d1,...,dN-1),它们通过串/并转换器分别调制在N个子载波(f0,f1,...,fN-1)上,这些子载波满足正交特性,其频谱相互重叠。所谓子载波频谱正交是指两个相邻子载波的频率相差系统的码元传输速率fs,在传统的频分复用(FDMA)系统中,相邻两个子信道的中心频点至少相差码元传输速率的3~5倍以防止邻道干扰,而OFDM的相邻子载波十分接近,大大提高了谱利用率,其频谱分布如图3所示,它们在频域上是相互交叠的。研究表明,只要子载波之间满足特定的正交约束条件,采用变频和积分的手段就可以有效地分离出各个子信道信号〔3〕。
在发送端的串行码元序列(d0,d1,...,dN-1)首先实现基带调制,而后进行串并转换。经过分路之后的N路子信道码元的周期T从△t增加到N△t,分别调制在N个子载波(f0,f1,...,fN-1)上。f0为更低子载波频率,相邻子载波相差1/T,所以,N个子载波可以表示为:
在接收端N路信号分别用各子载波混频和积分恢复出子信号。由于子载波的正交性,混频和积分电路可以分离出各个子信道的信号,如式(4)所示:
其中,d(m)是接收机中第m路子信道的输入信号,从式(4)可以看出它与发送端的第m路子信道相等。地下电缆故障探测仪通过向地下管道发送出特定的电磁波信号,探测仪利用探头与磁力线地平面垂直相切时,收到的信号最小(几乎为零)的原理来测定埋地电缆的走向和深度。如果每个子信道都可以正确解调出源信号,将其合并后就能够恢复出发送端高速串行码元序列(d0,d1,...,dN-1)。
3.2 OFDM调制的具体实现
OFDM调制的原理虽然是用N个相互正交的载频分别调制N路子信道码元序列,但是在实际系统中很难采用这种方式,因为我们无法防止子信道之间严重的邻道干扰。管线探测仪能在不破坏地面覆土的情况下,快速准确地探测出地下自来水管道、金属管道、电缆等的位置、走向、深度及钢质管道防腐层破损点的位置和大小。是自来水公司、煤气公司、铁道通信、市政建设、工矿、基建单位改造、维修、普查地下管线的必备仪器之一。OFDM调制之所以成功应用的一个重要原因是,它可以采用数字信号处理技术来实现调制和解调过程。